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Introduction
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• Proactive Information Retrieval (IR)

- Without interrupting the User-experience → Minimizing Human Effort

- Need for Proactive IR → Queries can be short

- State-of-the-art Neural Approaches→ Sensitivity to Noise (Jones et al. 2021)

• Spotify Podcast Dataset 

- ASR transcripts of ~105,000 Podcasts with 18% Word-Error Rate 

- Segment Retrieval task with ~ 3.5 Million, 2-minute segments 

of Podcasts with a 1-minute overlap
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• Spotify Podcast Dataset

- 8 training topics / 50 testing topics 

- All topics provided with descriptions → proxy for user history (in the context of Proactive IR)

• Differences from Previous Work

- Wikipedia-based entity linking has been previously explored by 

- (Azad & Deepak, 2019) and (Nasir et al., 2019) albeit on non-noisy text with a focus on Query-Expansion 

- NER / POS-tagging for Noisy Retrieval was shown to be effective by DCU (Moriya & Jones, 2020) 

- Another state-of-the-art approach (Jones et al., 2021) focuses on

- word embeddings + Sequential Dependence Model + Neural re-ranking (Galuscáková et al., 2020)

- Our approach differs in 

- ‘Wikification’ of Queries + Segments 

- We choose the 8 training topics and descriptions with ~14,000 negative segments per topic

→ Down-sampled dataset called Podcast Small → 14,179, annotated 2 min segments
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Previous Work
• Concept Based User Modelling 

- Short text of social media posts can be used to build a user profile (Piao and Breslin, 2016)

- Feature space can be too vast → Challenge in increasing recall

- Expert-based annotation to improve retrieval has been explored in Education (Corbett & Anderson, 1994)

- But, is it scalable? 

- ‘Wikification’, Connecting natural text to Wikipedia articles (Brank et al., 2017)

- Eventual emphasis on disambiguating the meaning of the query through key-word extraction
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Previous Work
• Noisy Information Retrieval 

- Sophisticated probabilistic models outperform state-of-the-art Neural IR approaches (Jones, 2021)

- A linear combination of BM25 and DPH used by DCU (Moriya & Jones, 2020)

- Noise sensitivity of Neural approaches was further recently corroborated by (Sidiropoulos et al., 2022)

- Combine and re-rank approach by (Galuscáková et al., 2020) uses 

- query + description (as modified queries) 

- word-embeddings and a sequential dependence model 

- a final neural re-ranking with a model trained on an orthogonal dataset 
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Overall Design 

Introduction            Background           Methodology and Results Conclusion



7

Will “Two-pronged” Wikification lead to 
a better overlap?
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Research Questions
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RQ1 : Do Wikipedia concepts carry a signal that indicates relevance of documents to queries?
RQ2:  Can Wikipedia annotations improve noisy information retrieval?

Down-
Sampled 

Data

Wikfier-
API 

Jaccard 
Similarity 

Coefficient 

One-tailed 
Mann 

Whitney-
U-Test 

Relevant Non-relevant

Is there a statistically significant difference between 
the median of Jaccard Similarity of the two groups??
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RQ1 : Do Wikipedia concepts carry a signal that indicates relevance of documents to queries?
RQ2:  Can Wikipedia annotations improve noisy information retrieval?

PODCAST 
SMALL 

Baseline 
Performance

DCU 
Approach 

BM 25 + DPH

Proposed 
Models 

Evaluation

BM25 DPH • Wiki_rel
• Ent_wiki_rel

• NDCG
• NDCG @ 30
• Precision @ 10
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Extending more on RQ2 
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• Baselines

- Both Models (BM25, DPH) are informed by results published in (Jones et al., 2021) 

- DPH is based on the Divergence From Randomness Framework (Amati, 2006)

• DCU Approach 

- A linear combination of BM25 + DPH models 

- The approach we picked from DCU approaches was 

- Topics → Topics + Entities (Description) → IR on (BM25 + DPH) → Evaluation 
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• Wiki_rel

- The Model Differs from the DCU approach by 

→ Using Wikipedia concepts extracted from the entire description rather than just the entities

• Ent_wiki_rel

- The model differs from Wiki_rel approach by 

→ Entities are also added to query from description 
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Results RQ1
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• We Reject the Null Hypothesis. The median of Jaccard Similarity of the 
relevant set is > the median on non-relevant set 
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Results RQ1
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• We Reject the Null Hypothesis. The median of Jaccard Similarity of the 
relevant set is > the median on non-relevant set 
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Results RQ2
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• Results show there is promise in using Wikipedia concepts

• Gains in early precision, but NDCG performance is similar ? 
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Discussion
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• No Significant NDCG gains because

- Slightly less-relevant topics contained in the segments have slightly higher scores 

- Irrelevant concepts add noise (not complete noise but irrelevant topics get added to segments/topics) 

• Results can go up if we only use Wikipedia topics which have anchors but have we haven’t run that experiment

Introduction            Background           Methodology and Results Conclusion
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Discussion
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• Entities from Description, similarly can also add such noise through slightly irrelevant concepts 

• Our future work involves 

- A full-scale study on the annotated Spotify Podcast Dataset (Wikified) on Testing topics

- A user study to if the approach is useful in a real-world scenario 

Introduction            Background           Methodology and Results Conclusion
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•Query Disambiguation using Wikipedia Concepts 
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Conclusion

Department of Computer Science

• The overlap between Wikified segments and queries is statistically significant in terms of medians of Jaccard 
Similarity Coefficient with the relevant set having a significantly higher median 

• Using Wikipedia Concepts in IR shows promising results and invites a full-scale discussion with anchor-topics 
and refining the approach in how only relevant Wikipedia Topics are added 

• A “two-pronged” Wikification approach can facilitate a higher-degree ‘human-in-the-loop’ operation

Introduction            Background           Methodology and Results            Conclusion
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