

Towards Proactive Information Retrieval in Noisy Text with Wikipedia Concepts

Tabish Ahmed, Sahan Bulathwela,

Centre for Artificial Intelligence, University College London (UK)

Introduction

- Proactive Information Retrieval (IR)
 - Without interrupting the User-experience → Minimizing Human Effort
 - Need for Proactive IR → Queries can be short
 - State-of-the-art Neural Approaches → Sensitivity to Noise (Jones et al. 2021)
- Spotify Podcast Dataset
 - ASR transcripts of ~105,000 Podcasts with 18% Word-Error Rate
 - Segment Retrieval task with ~ 3.5 Million, 2-minute segments
 of Podcasts with a 1-minute overlap

Spotify Podcast Dataset

- 8 training topics / 50 testing topics
- All topics provided with descriptions → proxy for user history (in the context of Proactive IR)

Differences from Previous Work

- Wikipedia-based entity linking has been previously explored by
- (Azad & Deepak, 2019) and (Nasir et al., 2019) albeit on non-noisy text with a focus on Query-Expansion
- NER / POS-tagging for Noisy Retrieval was shown to be effective by DCU (Moriya & Jones, 2020)
- Another state-of-the-art approach (Jones et al., 2021) focuses on
 - word embeddings + Sequential Dependence Model + Neural re-ranking (Galuscáková et al., 2020)
- Our approach differs in
- 'Wikification' of Queries + Segments
- We choose the 8 training topics and descriptions with ~14,000 negative segments per topic
- → Down-sampled dataset called **Podcast Small** → **14,179**, **annotated 2 min segments**

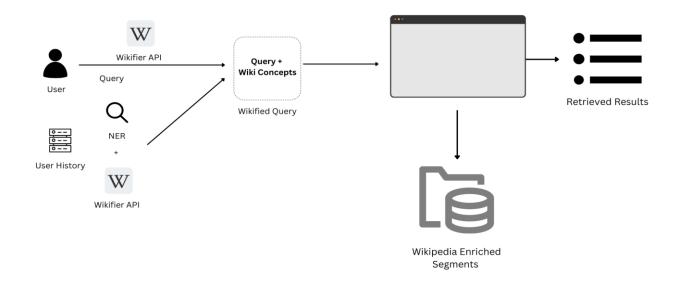
Previous Work

- Concept Based User Modelling
 - Short text of social media posts can be used to build a user profile (Piao and Breslin, 2016)
 - Feature space can be too vast → Challenge in increasing recall
 - Expert-based annotation to improve retrieval has been explored in Education (Corbett & Anderson, 1994)
 - But, is it scalable?
 - 'Wikification', Connecting natural text to Wikipedia articles (Brank et al., 2017)
 - Eventual emphasis on disambiguating the meaning of the query through key-word extraction

Previous Work

- Noisy Information Retrieval
 - Sophisticated probabilistic models outperform state-of-the-art Neural IR approaches (Jones, 2021)
 - A linear combination of BM25 and DPH used by DCU (Moriya & Jones, 2020)
 - Noise sensitivity of Neural approaches was further recently corroborated by (Sidiropoulos et al., 2022)
 - Combine and re-rank approach by (Galuscáková et al., 2020) uses
 - query + description (as modified queries)
 - word-embeddings and a sequential dependence model
 - a final neural re-ranking with a model trained on an orthogonal dataset

Overall Design



Will "Two-pronged" Wikification lead to a better overlap?

Wikification

Adding relevant signals on both ends

Query Disambiguation through
Wikification

USER

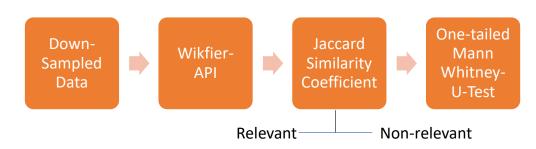
Capturing Semantic Meaning of Documents while being less sensitive to noise

Documents/ Segments

Research Questions

RQ1: Do Wikipedia concepts carry a signal that indicates relevance of documents to queries?

RQ2: Can Wikipedia annotations improve noisy information retrieval?

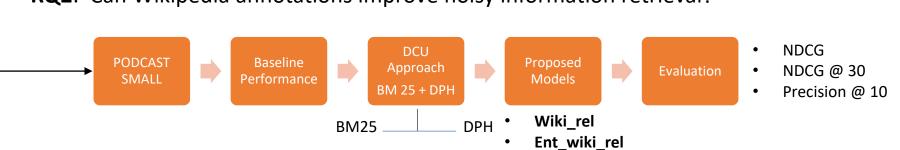


Is there a statistically significant difference between the median of Jaccard Similarity of the two groups??

Research Questions

RQ1: Do Wikipedia concepts carry a signal that indicates relevance of documents to queries?

RQ2: Can Wikipedia annotations improve noisy information retrieval?



Extending more on RQ2

Baselines

- Both Models (BM25, DPH) are informed by results published in (Jones et al., 2021)
- DPH is based on the Divergence From Randomness Framework (Amati, 2006)

$$rel(q, s) = f(q_{txt}, s_{txt})$$

DCU Approach

- A linear combination of BM25 + DPH models
- The approach we picked from DCU approaches was
- Topics → Topics + Entities (Description) → IR on (BM25 + DPH) → Evaluation

$$rel(q, d, s) = f(q_{txt} + d_{ent}, s_{txt})$$

Proposed Models

- Wiki_rel
 - The Model Differs from the DCU approach by
 - → Using Wikipedia concepts extracted from the entire description rather than just the entities

$$rel(q, d, s) = f(q_{txt} + q_{wiki} + d_{wiki}, s_{txt} + s_{wiki})$$

- · Ent wiki rel
 - The model differs from Wiki_rel approach by
 - → Entities are also added to query from description

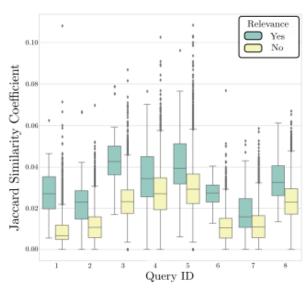
$$rel(q, d, s) = f(q_{txt} + d_{ent} + q_{wiki} + d_{wiki}, s_{txt} + s_{wiki})$$

Results RQ1

	Number	of Documents	Median Jaccard Similarity			MannWhitney U test	
Query ID		Non-Relevant	Relevant	Non-Relevant	Difference	Test Statistic	p value
Query ID	Relevant	Non-Kelevant	Relevant	Non-Kelevant	Dilletence	Test Statistic	
1	70	14109	0.027	0.007	0.020	25680	1.03E-49
2	63	14116	0.023	0.011	0.012	47466	8.84E-46
3	78	14101	0.043	0.023	0.019	264688	1.22E-16
4	78	14101	0.034	0.027	0.007	393033	1.41E-06
5	80	14099	0.039	0.029	0.010	455015	1.42E-03
6	37	14142	0.027	0.010	0.017	35748	8.37E-48
7	77	14102	0.016	0.011	0.005	56322	2.80E-44
8	80	14099	0.032	0.023	0.010	271961	6.31E-16

• We Reject the Null Hypothesis. The median of Jaccard Similarity of the relevant set is > the median on non-relevant set

Results RQ1



 We Reject the Null Hypothesis. The median of Jaccard Similarity of the relevant set is > the median on non-relevant set

Results RQ2

	Features			Metrics				
Model	Query	NER	Wiki	NDCG	NDCG at 30	Precision at 10		
	Text	Entities	Concepts					
Baselines								
DPH	×	O	o	0.48	0.30	0.32		
BM25	×	O	o	0.48	0.28	0.31		
DCU	×	×	o	0.51	0.32	0.30		
New Proposals								
Wiki_rel	×	O	×	0.49	0.29	0.31		
Ent_Wiki_rel	×	×	×	0.51	0.30	0.36		

- Results show there is promise in using Wikipedia concepts
- Gains in early precision, but NDCG performance is similar?

Discussion

- No Significant NDCG gains because
- Slightly less-relevant topics contained in the segments have slightly higher scores
- Irrelevant concepts add noise (not complete noise but irrelevant topics get added to segments/topics)
- Results can go up if we only use Wikipedia topics which have anchors but have we haven't run that experiment

Discussion

- Entities from Description, similarly can also add such noise through slightly irrelevant concepts
- Our future work involves
- A full-scale study on the annotated Spotify Podcast Dataset (Wikified) on Testing topics
- A user study to if the approach is useful in a real-world scenario

Discussion

Query	Query Only	Query + Description	
coronavirus spread	wiki/Coronavirus	wiki/Novel_coronavirus	
greta thunberg cross atlantic	-	wiki/Greta_Thunberg	
black hole image	wiki/Black_hole	wiki/Black_hole	
daniel ek interview	-	wiki/Daniel_Ek	
michelle obama becoming	-	wiki/Michelle_Obama	
	wiki/Becoming_(philosophy)	wiki/Becoming_(book)	
anna delvey	wiki/Indian_anna	wiki/Anna_Sorokin	
facebook stock prediction	wiki/Facebook	wiki/Facebook	
	wiki/Stock	wiki/Stock	

Query Disambiguation using Wikipedia Concepts

Conclusion

- The overlap between Wikified segments and queries is statistically significant in terms of medians of Jaccard Similarity Coefficient with the relevant set having a significantly higher median
- Using Wikipedia Concepts in IR shows promising results and invites a full-scale discussion with anchor-topics and refining the approach in how only relevant Wikipedia Topics are added
- A "two-pronged" Wikification approach can facilitate a higher-degree 'human-in-the-loop' operation

Towards Proactive Information Retrieval in Noisy Text with Wikipedia Concepts

Tabish Ahmed, Sahan Bulathwela,

Centre for Artificial Intelligence, University College London (UK)

Contact: tabish.ahmed.21@ucl.ac.uk, m.bulathwela@ucl.ac.uk

References

- H. K. Azad, A. Deepak, A new approach for query expansion using wikipedia and wordnet, Information sciences 492 (2019) 147–163..
- J. A. Nasir, I. Varlamis, S. Ishfaq, A knowledge-based semantic framework for query expansion, Information processing & management 56 (2019) 1605–1617
- G. Amati, Frequentist and bayesian approach to information retrieval, in: European Conference on Information Retrieval, Springer, 2006, pp. 13–24.
- P. Galušcáková, S. Nair, D. W. Oard, Combine and re-rank: The university of maryland at the trec 2020 podcasts track (2020)
- Y. Moriya, G. J. Jones, Dcu-adapt at the trec 2020 podcasts track., in: TREC, 2020
- P. Sen, Proactive information retrieval, Ph.D. thesis, Dublin City University, 2021.
- G. Piao, J. G. Breslin, Analyzing mooc entries of professionals on linkedin for user modeling and personalized mooc recommendations, in: Proceedings of the 2016 Conference on User Modeling Adaptation and Personalization, UMAP '16, 2016.
- F. Zarrinkalam, H. Fani, E. Bagheri, M. Kahani, Predicting users' future interests on twitter,in: European Conference on Information Retrieval, Springer, 2017, pp. 464–476.

References

- A. T. Corbett, J. R. Anderson, Knowledge tracing: Modeling the acquisition of procedural knowledge, User Modeling and User-Adapted Interaction 4 (1994).
- J. Brank, G. Leban, M. Grobelnik, Annotating documents with relevant wikipedia concepts, in: Proc. of Slovenian KDD Conf. on Data Mining and Data Warehouses (SiKDD), 2017
- R. Jones, B. Carterette, A. Clifton, M. Eskevich, G. J. Jones, J. Karlgren, A. Pappu, S. Reddy, Y. Yu, Trec 2020 podcasts track overview, arXiv preprint arXiv:2103.15953 (2021).
- G. Sidiropoulos, S. Vakulenko, E. Kanoulas, On the impact of speech recognition errors in passage retrieval for spoken question answering, arXiv preprint arXiv:2209.12944 (2022).