Adaptive Re-Ranking as an Information-Seeking Agent

SEAN MACAVANEY NICOLA TONELLOTTO CRAIG MACDONALD

@ MACAVANEY PASIR @ CIKM 2022

Stage 1: Retrieve candidate results from a corpus

hundreds/thousands of documents

Stage 2: Re-order the candidates

hundreds/thousands of documents

Re-Ranking

same documents, new order

Stage 2: Re-order the candidates

hundreds/thousands of documents

Re-Ranking

same documents, new order

Stage 2: Re-order the candidates

hundreds/thousands of documents

same documents, new order

What if we consider the re-ranking process as an agent?

Environment:

Final Ranking

Agent:

Actions:

Score Batch

Backfill

State:

Environment:

State:

Environment:

State:

Environment:

State:

Environment:

State:

Environment:

State:

Environment:

State:

This is similar to how a user might traverse search results.

But users may apply other strategies, too.

Introducing the find neighbours action

Based on the Clustering Hypothesis: Relevant documents are often "close" to one another.

Environment:

Final Ranking

[empty]

Agent:

Actions:

Score Batch (initial)

Backfill

Find Neighbours

Score Batch (frontier)

State:

Remaining budget

Frontier

[empty]

Adaptive Re-Ranking ALTERNATE

"Alternate" Strategy: Alternate between scoring from initial pool and neighbours. [cikm2022]

Adaptive Re-Ranking

ALTERNATE

Adaptive
Re-Ranking

ALTERNATE

Adaptive Re-Ranking

ALTERNATE

Adaptive
Re-Ranking

ALTERNATE

Adaptive
Re-Ranking

ALTERNATE

Adaptive Re-Ranking ALTERNATE

Adaptive Re-Ranking ALTERNATE

"Alternate" works, but there must be a smarter strategy, right?

If batch from initial will give more relevant documents than frontier

There's considerable room to improve upon Alternate.

		TREC DL 2019 (dev)		TREC DL 2020 (test)	
Pipeline	Agent	GAR _{bm25}	GAR_{tct}	GAR _{bm25}	GAR_{tct}
BM25»MonoT5	Non-Adaptive	0.699	0.699	0.711	0.711
	Alternate	0.726	0.743	0.743	0.749
	Oracle	0.74 7	0.786	0.748	0.768
TCT»MonoT5	Non-Adaptive	0.704	0.704	0.693	0.693
	Alternate	0.733	0.724	0.719	0.710
	Oracle	0.793	0.766	0.762	0.754
D2Q»MonoT5	Non-Adaptive	0.747	0.747	0.731	0.731
	Alternate	0.757	0.766	0.748	0.748
	Oracle	0.797	0.798	0.791	0.793
SPLADE»MonoT5	Non-Adaptive	0.737	0.737	0.731	0.731
	Alternate	0.745	0.737	0.737	0.734
	Oracle	0.807	0.783	0.777	0.781

Two-Phase: Spend k of your budget on the initial re-ranking upfront, then move to neighbours.

Adaptive Re-Ranking TWO-PHASE

Can outperform Alternate... But not always.

Adaptive Re-Ranking TWO-PHASE

Can outperform Alternate... But not always.

Adaptive Re-Ranking TWO-PHASE

Can outperform Alternate... But not always... And is sensitive to k

Threshold: Only explore neighbours of documents that meet relevance score threshold r.

But users may apply other strategies, too.

Adaptive Re-Ranking THRESHOLD

Can outperform Alternate... But not always... And is sensitive to r

Greedy: Score from initial ranking or frontier based on what gave the highest score recently.

If batch from initial gave higher score on most recent batch than frontier

Adaptive Re-Ranking GREEDY

Also no better than Alternate

		TREC DL 2019 (dev)		TREC DL 2020 (test)	
Pipeline	Agent	GAR_{bm25}	${\rm GAR}_{tct}$	${\rm GAR}_{bm25}$	${\rm GAR}_{tct}$
BM25»MonoT5	Non-Adaptive	0.699	0.699	0.711	0.711
	Oracle .	0.747	0.786	0.748	0.768
	Alternate	0.726	0.743	0.743	0.749
	TwoPhase	0.741	0.743	0.743	0.744
	Threshold	0.742	0.751	0.744	0.744
	Greedy	0.723	0.737	0.743	0.744
TCT»MonoT5	Non-Adaptive	0.704	0.704	0.693	0.693
	Oracle	0.793	0.766	0.762	0.754
	Alternate	0.733	0.724	0.719	0.710
	TwoPhase	0.733	0.722	0.719	0.707
	Threshold	0.731	0.720	0.711	0.705
	Greedy	0.731	0.725	0.713	0.708
D2Q»MonoT5	Non-Adaptive	0.747	0.747	0.731	0.731
	Oracle	0.797	0.798	0.791	0.793
	Alternate	0.757	0.766	0.748	0.748
	TwoPhase	0.769	0.767	0.748	0.747
	Threshold	0.766	0.767	0.746	0.745
	Greedy	0.754	0.757	0.744	0.748
SPLADE»MonoT5	Non-Adaptive	0.737	0.737	0.731	0.731
	Oracle	0.807	0.783	0.777	0.781
	Alternate	0.745	0.737	0.737	0.734
	TwoPhase	0.769	0.764	0.748	0.736
	Threshold	0.766	0.759	0.746	0.744
	Greedy	0.747	0.740	0.734	0.734

Let's make re-rankers smarter!

Moving beyond simply re-scoring an initial set of documents Allowing re-rankers to pull in new relevant documents.

Simple heuristics are strong, but there's room to improve Oracle results show considerable headroom.

Fertile ground: more actions, multiple initial rankings, etc.

Learning-to-re-rank? Learning to stop? Multi-armed bandits? Etc.

Code: https://github.com/terrierteam/pyterrier_adaptive

Adaptive Re-Ranking as an Information-Seeking Agent

- Building off CIKM 2022 proposal for "adaptive re-ranking"
- There is considerable room for improvement in pipelines by employing smarter agents
- The "Alternate" adaptive strategy is a remarkably strong baseline
- Sets the stage for work that learns a good strategy for re-ranking

SEAN MACAVANEY NICOLA TONELLOTTO CRAIG MACDONALD

(C) MACAVANEY PASIR @ CIKM 2022

EPSRC grant EP/R018634/1: Closed-Loop Data Science for Complex, Computationally- & Data-Intensive Analytics.